
Design project TCS
Coursecode: 202001048

DeepCASE Dashboard
A detailed report regarding the DeepCASE
Dashboard

Authors:
Group 1:
Beau Jonkhout,
Jan van Zwol,
Marijke van Iperen,
Katy Radzkova,
Kristupas Cepelis,
Lucian Trusca

Supervisors:
Dr. T. van Ede
Dr. A. Continella

April, 2024

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science

Preface

This section is dedicated to expressing special thanks of gratitude, for the ones that con-
tributed to the project.

We would like to thank Dr. Thijs van Ede for his effort regarding the project. During
the weekly meetings, we have received valuable feedback, positive reactions and generally
an interesting time when talking about the project. Each week on the Tuesday at 16:00,
we met to discuss general, specific and organisational issues regarding the development
process. Each week, it felt rewarding to join the meeting, because Thijs always responded
in a positive way, while still providing great feedback.

So again, thanks for all the effort.

Group 1

Dashboard Deepcase

Beau Jonkhout,
Jan van Zwol,

Marijke van Iperen,
Katy Radzkova,

Kristupas Cepelis,
Lucian Trusca ∗

April, 2024

Abstract

DeepCASE is a security tool that is used by security operators to monitor network
systems for suspicious activity. It provides an automated way of analysing these secu-
rity logs for similar events and can be used by security operators to filter for potentially
harmful activity. This is done by using an artificial intelligence that determines which
security events are correlated to each other. A dashboard is created that allows the
users to interact with the system by scoring sequences in the manual phase and view-
ing the result of the semi-automatic phase. The main goal of this project is to create a
dashboard showing the results of the DeepCASE security tool and providing security
operators with a better understanding of potential attacker activities on monitored
system.
Keywords: deepCASE, AI, security, dashboard

∗Email:b.f.c.jonkhout@student.utwente.nl, j.vanzwol@student.utwente.nl,
m.m.a.p.vaniperen@student.utwente.nl, k.cepelis@student.utwente.nl, k.radzkova@student.utwente.nl,
l.trusca@student.utwente.nl

1

Contents

1 Introduction 4
1.1 Struggle of Security Operators . 4
1.2 Core Problem and Solution with DeepCASE 4
1.3 The Proposed Dashboard . 4
1.4 Conclusion . 4

2 DeepCASE 5
2.1 Sequences and the Context Builder . 5
2.2 Clustering and the Interpreter . 5
2.3 Risk labels and Manual Analysis . 6
2.4 Semi-automatic Analysis . 6

3 Requirements 7
3.1 Functional Requirements . 7
3.2 Non-Functional Requirements . 8

4 Overall Process 9
4.1 Design Process . 9
4.2 Coding Process . 9
4.3 Cooperation and Collaboration . 9
4.4 Conclusion . 9

5 UI design 10
5.1 Sidebar . 10
5.2 Database . 11
5.3 Cluster View . 12
5.4 Manual Analysis . 14
5.5 Semi-auto Analysis . 15
5.6 User Manual . 16

6 Global design 18
6.1 Database Schema . 18

6.1.1 Our Approach . 18
6.1.2 Graphical Overview & Structure . 18
6.1.3 Conclusion . 18

6.2 Design Patterns & File Structure . 19
6.2.1 Design Patterns . 19

7 Detailed design 20
7.1 DeepCASE integration . 20
7.2 Front End in Dash . 21

7.2.1 HTML . 21
7.2.2 CSS . 21
7.2.3 Color scheme . 22

7.3 File-structure . 22
7.4 Variables . 22
7.5 Threads . 23
7.6 Selection of events . 23

2

8 Testing the System 25
8.1 Testing Approach . 25

8.1.1 Unit testing . 25
8.1.2 Integration testing . 25
8.1.3 User Testing . 25

8.2 Requirements Testing . 27

9 Limitations And Further Improvements 30
9.1 Database Page . 30
9.2 Cluster view . 30
9.3 Manual analysis . 30
9.4 Semi-automatic Analysis . 31
9.5 General dashboard . 31
9.6 Conclusion . 32

10 Conclusions 33

A Manual 35
A.1 Installing Docker . 35
A.2 Running the Dockerfile . 35
A.3 Accessing the Application . 35
A.4 Further Assistance . 35
A.5 Using Test Files . 35

B Source code 35

1 Introduction

The design report for the DeepCASE Dashboard project presents a comprehensive ap-
proach for the creation of a user-friendly dashboard that enhances the interaction between
security operators and the DeepCASE module. By focusing on visualizing the decision-
making processes of DeepCASE, the dashboard aims to provide security operators with a
clearer understanding of attacker activity and the reasoning behind the alerts generated.
Here, we will explore the journey to developing this solution, starting from the challenges
faced by security operators and culminating in the innovative solution offered by Deep-
CASE and the added value of the dashboard.

1.1 Struggle of Security Operators

Security operators are tasked with the continuous monitoring of IT infrastructures to
identify potential threats. Employing systems such as Network Security Monitors (NSM)
and Intrusion Detection Systems (IDS), these operators sift through countless alerts to
detect suspicious activities. However, the sheer volume of alerts generated can overwhelm
even the most diligent teams, leading to a phenomenon known as alert fatigue. This occurs
when the frequency and quantity of alerts cause important warnings to be overlooked or
ignored, potentially allowing malicious activities to slip through undetected.

1.2 Core Problem and Solution with DeepCASE

At the heart of the issue is the fact that many of the detected events are not actually mali-
cious, leading to a flood of unnecessary alerts that contribute to operator overload. Deep-
CASE addresses this problem by automating the correlation of security events through
sophisticated contextual analysis. By understanding the context in which events occur,
DeepCASE effectively filters out benign activities and isolates those events that truly indi-
cate potential threats. This not only reduces the number of alerts that security operators
must handle but also enhances the accuracy of threat detection, ensuring that significant
alerts receive the attention they deserve.

1.3 The Proposed Dashboard

By streamlining the process of event analysis, DeepCASE significantly alleviates the work-
load on security operators, enabling them to focus on genuine threats without the distrac-
tion of irrelevant alerts. The proposed dashboard is designed to visually represent this
contextual decision-making process, offer operators a way to interact with the module and
easily see which events need special attention. Creating a GUI will increase the usability
of DeepCASE and makes retrieving this information and completing these tasks easier.

1.4 Conclusion

In conclusion, the DeepCASE Dashboard project is not just about creating a tool for vi-
sualization; it is about transforming the way security operators interact with detection
systems. Through this dashboard, operators can gain a deeper understanding of the sys-
tem’s analytics, leading to improved operational efficiency and enhanced security measures.
The design report details the journey towards achieving this goal, outlining the challenges,
the innovative solution provided by DeepCASE, and the impact of this solution on the
day-to-day operations of security teams.

4

2 DeepCASE

In this section we will give a summary of the way DeepCASE functions.
DeepCASE [2] is a AI tool that is designed to filter security events within the network
systems of a company that might need more attention from security operators. In short
it does this by analyzing the security events and clustering them. Using these clusters
security operators can see which events are similar to each other. If a new sequence is
clustered with sequences that were already deemed suspicious or even malicious, that se-
quence might need more attention. This clustering functionality is what will save security
operators a lot of time.

Figure 1: DeepCASE analysis flow

Figure 1 is a diagram that represents the flow of DeepCASE’s analysis.

2.1 Sequences and the Context Builder

Every event happens within a context. Entering an incorrect password once is innocent
enough. However, if it’s the 100th time in ten seconds it becomes suspicious. That is why
DeepCASE takes the context of an event into account. DeepCASE takes the nine previous
events created by the same device and together with the current event this makes up a
sequence. So when we refer to a sequence we mean a security event and the nine previous
events created by the same device. This is part A in figure 1.
Not all events in a sequence are as closely correlated. To determine which events are
most important in the sequence, the context builder is used. The context builder is an
AI tool that analyzes sequence and tries to predict which event is going to be next in the
sequence. If it predicts this correctly it will see which events were most important to make
that prediction and then assumes these are also the most relevant to the sequence from a
cybersecurity stand point. The importance of the events within the prediction are called
attention vectors. If we refer to attention vectors we mean the degree to which an event is
relevant to the sequence. This is part B in figure 1.

2.2 Clustering and the Interpreter

Once the sequences have been analysed by the context builder they are passed through
to the interpreter. What happens here is that the sequences are put into clusters. It
clusters the sequences based on the events contained in the sequence and their attention
vectors. With this method the interpreter groups similar sequences together. These are
called clusters. When we refer to clusters we mean a group of sequences that have been
clustered together by the interpreter. This is part C in figure 1.

5

2.3 Risk labels and Manual Analysis

Once the sequences are clustered we still do not know which sequences require our attention.
We only know which sequences are related. To accomplish this the security operator has
to do some manual analysis. This means that the security operator has to look through a
series of sequences and manually assign a risk label to each sequence. This risk label is a
metric for how likely the sequences is to be malicious. This is part D in figure 1.

2.4 Semi-automatic Analysis

Once enough sequences are labelled DeepCASE can label sequences on it’s own. It does
this by making the assumption that if sequences are in the same cluster and thus similar,
that should mean that their risk labels are also correlated. If a sequences is clustered
together with sequences that were deemed as attacks it is probable that the sequence is
also an attack. If there are sequences in a cluster with different risk labels there are multiple
ways of determining what the default label for that cluster should be like: the minimum,
maximum or median risk label value. This is part E in figure 1.

6

3 Requirements

In order to get a better sense of the requirements, we will start by providing the functional
and non-functional requirements of the project. The requirements for the project are
presented in the form of user stories and refer to Security Operator or Security Operations
Center (SOC) as “user”, Group 1 of Design Project as “developer”, and the dashboard
product as “ system”.

3.1 Functional Requirements

Must have

• As a user, I want to upload data in a format accepted by the DeepCASE module.

• As a user, I want to be able to train the DeepCASE module on the uploaded data.

• As a user, I want to be able to score individual events. (Manual analysis)

• As a user, I want the DeepCASE module to give a score to uploaded data (Semi-
automatic analysis)

• As a user, I want the system to store the scores of the clusters.

• As a user I want to be able to inspect security event sequences. (Security event
sequences)

• As a user I want to be able to see which events in the sequence are correlated.
(Context builder)

• As a user, I want to be able to inspect individual events. (Interpreter)

• As a user, I want to be able to approve or disapprove the score given to a sequence.
(Semi-automatic analysis)

Should have

• As a user, I want the results of the uploaded security files to be stored on the server
and available for viewing by any user.

• As a user, I want the system to randomly suggest which sequences to rate during the
manual phase.

• As a user, I want to have a basic manual integrated into the website.

• As a user, I want the system to visualise the clusters graphically.

Could have

• As a user, I want to be able to filter sequences with specific parameters.

– The parameters could be time, IP address, type of events and risk values

• As a user, I want to have a basic guide on the website so that working with the new
system is easy.

• As a user, I want the system to have regular backups.

7

• As a user, I want the system to suggest the most relevant sequences by an algorithm

– The algorithm should be based on specific metrics, (e.g. greatest difference in
vectors)

Will not have

• As a user, I want to connect it to real-time security loggers, so that the data can be
analysed real-time.

• As a user, I want to receive notifications about newly detected malicious events.

3.2 Non-Functional Requirements

Underneath, you will find the requirements that are crucial for the general system’s oper-
ability and have not been formulated yet in the functional requirements. Underneath you
will find our defined non functional requirements:

Performance

• As a user, I want the dashboard and analysis to show results within a reasonable
time frame (1 or 2 seconds).

Usability

• As a user, I want the dashboard to be understandable with minimal training.

• As a user, I want the dashboard to be intuitive.

• As a user, I want the dashboard to give me accurate and timely feedback when an
error occurs.

Reliability

• As a user, I want the system to not have any substantial freezes.

• As a user, I want the system to be robust when against unexpected inputs.

• As a user, I want the data shown in the dashboard to be correct.

Scalability

• As a user, I want the dashboard’s load time to remain static with the addition of
data to the database.

Portability

• As a user, I want the system to be compatible with all major browsers.

Availability - How long is the average system downtime?

• As a user, I want the dashboard to be available 99

Maintainability

• As a developer, I want the code base to be maintainable.

• As a developer, I want the code to be commented on and documented.

8

4 Overall Process

In this section, we will reflect on the process and working dynamic in and outside the team.

4.1 Design Process

The design process of our project was iterative and dynamic, using Figma as our main
design tool. Initially, we faced challenges with an early version of the design file that led
to misinterpretations. However, these were small setbacks, but they were learning points
that helped us in our approach.
Having weekly meetings, we established a consistent workflow that allowed a steady stream
of design increments. This approach allowed us to introduce both minor adjustments and
major revisions systematically. We updated the Figma file to suit the stakeholder’s needs.

4.2 Coding Process

When implementing the figma design, we saw that the initial phase of our coding journey
was marked by communication hurdles, leading to instances where coding best practices
were overlooked. This occasionally resulted in frustration among team members, particu-
larly when unexpected commits were made. Over the next few weeks, by embracing better
coding practices such as strict adherence to abstraction, modularity, feature-branching, and
establishing clear coding conventions, we saw a significant improvement. These enhance-
ments fostered a more harmonious development environment, culminating in consistent
commits and a smoother collaborative experience.

4.3 Cooperation and Collaboration

Our six-person team naturally divided into roles that played to each member’s strengths
— some gravitated towards organization, some focused intensively on coding, while others
dedicated themselves to the nuances of styling. This organic structuring led to an efficient
mode of operation.
Collaboration proved essential, especially when integrating distinct modules; real-time in-
formation exchange, facilitated by text communication on platforms like Discord or in-
person meetings, helped our workflow. Tasks such as CSS implementation, user manual
page additions are examples of collaboration. But tasks like presentation preparations,
design report authoring, and testing, although too succinct for their own paragraphs, were
integral to our project’s success and are noteworthy contributions to our collaborative
effort.

4.4 Conclusion

Reflecting on the entirety of our process, we went through various phases of growth and
adaptation, both in design and development. Our journey from initial misinterpretations to
a refined and efficient workflow highlights the value of iterative improvement and the power
of collaboration. Through effective and consistent communication, having best practices,
and leveraging individual strengths, we created a cohesive team dynamic that was essential
in creating the dashboard.

9

5 UI design

In this section we will be discussing the design of the UI of the dashboard. In every
subsection a screenshot of a different page will be shown. Every part part of the UI
will have a description of it’s function and a explanation on the decisions that let up to
this design. The screenshots will include red numbers to easily refer to sections of the
dashboard. These are of course not part of the actually dashboard.

5.1 Sidebar

Figure 2: Sidebar

The sidebar or navigation bar is the part on the left of the screen. This is used to open
different pages of the dashboard. Clicking a button on this sidebar will open the corre-
sponding page on the right of the screen. The sidebar itself is a static component both
visually and functionally. So the sidebar will remain the same no matter on which page
you are.
This design of a sidebar is very common in apps and websites. We tried to duplicate that
design because almost every one will have encountered such a design and thus it will be
familiar and intuitive to almost all users. We also included a visual representation of the
page in all the buttons so that users can quickly find the correct button without having to
read them all. Looking at symbols is generally quicker than reading words.

Elements:

1. Button that will open the database page

2. Button that will open the cluster view page

3. Button that will open the manual analysis page

4. Button that will open the semi-automatic analysis page

5. Button that will open the user manual page

10

Figure 3: Database page

5.2 Database

The database page is where the user can upload new files and manage the already uploaded
files. When someone wants to analyse a csv file containing security events this is the page
they will start on. To upload the file they can simply press upload file (element 1) and
once it is uploaded a pop-up will appear as shown in figure 4.

Figure 4: Upload successful pop-up

After the file has been uploaded the user can let the uploaded data be analysed by Deep-
CASE by pressing the start security analysis button (element 3). Pressing the button
will make the web server start the DeepCASE module and after it is done it will have
clustered the security events.
The security analysis does take awhile. To alert the user of this fact the pop-up shown in

11

figure 5 will appear.

Figure 5: Running DeepCASE pop-up

After the security analysis is done different sequences will be clustered and the user can
start analyzing the data using the dashboard.
The user can also easily switch between files they have already uploaded by clicking the
button with the server icon (element 2). This will reveal a list of uploaded files. The user
can select a file and the events contained in that file will than be shown on the different
pages to be analysed by the user.
The currently loaded file can also be inspected in table form in the table on the screen
(element 4). Here the user can look through the unordered data and use the second row
to filter the data. This can be used for example to check whether certain security events
are present in the file or to check whether the correct file has been upload.

Elements:

1. Button to upload a file from the user’s computer

2. Button to select one of the uploaded files

3. Button to start the security analysis of the previously uploaded file

4. Table that shows the currently selected file

5.3 Cluster View

This is the main page for analyzing security events, sequences and clusters. After a csv
file has been uploaded and processed by the DeepCASE module, a security operator can
select a cluster they want to analyze by pressing the select a cluster button (element 1).
After a cluster has been selected the different sequences belonging to that cluster will
be displayed in the table below (element 3). This table displays the time the sequence
occurred, the source of the attack/request, a numerical representation of the event type, a
description of the event and a risk label.

12

Figure 6: Cluster view page

The user can adjust the table by toggling certain columns on or off using the the toggle
columns button (element 2) to tailor the view to their desires and make the view more
suitable for their needs.
The user can inspect a sequence by selecting a sequences using the radio buttons on the
leftmost column of the top table (element 3). The selected sequence will be displayed
in the second table (element 5). Here the user can see the 9 preceding events to get
a better understanding of the sequence. This table displays the position of every event
in the sequence (the order in which they occurred), again a numerical and text based
description of the event and a attention score. The attention score shows which events
are most relevant to the sequence. A higher attention score means more relevance and the
scores of all events in a sequence should add up to 1.
Again the columns of this table can be toggled on or off just like the top table using the
toggle columns button (element 4).
The graph on the bottom of the page (element 7) shows the different sequences in the
cluster in visual form. Every sequence is displayed using a colored dot. The risk labels are
plotted on the vertical axis and the timestamp on the horizontal axis. In this view the user
can a get better insight in the timeline of the events. The user can also use the buttons on
the top of the graph (element 6) to highlight sequences of a certain risk level. Sequences
of that risk level will appear colored in the graph while the other dots will become gray.

Elements:

1. Button to select a cluster

2. Button to toggle columns in element 3 on or off

3. Table showing the sequences contained in the selected cluster

4. Button to toggle columns in element 5 on or off

5. Table that shows information about the selected sequence

6. Buttons to highlight a class of sequences in element 7

13

7. Graph that plots the sequences’ risk level against time of occurrence

5.4 Manual Analysis

Figure 7: Manual analysis page

The manual analysis page allows the user to alter certain attributes of the clusters and
events and help train the AI system. This is why this page is the most interactive one on
the dashboard.
A user can select a particular cluster with the select a cluster button (element 3) Which
will then appear in the table below (element 10). The user can also choose to let the
dashboard pick a cluster for them by either letting the dashboard select a random clus-
ter (element 5) or pick the cluster the dashboard feels is most relevant (element 7).
The same option are available for letting the dashboard pick a sequence with respectively
element 6 and element 8.
When a cluster is selected the dashboard shows the name of the cluster in a text box
(element 2). The user can decide to change the name of a cluster to a name they may
find more fitting. To do this the user has to write the new name in the text box (element
2) and press the change cluster name button (element 4).
The sequences contained in the selected clusters will appear in the top table (element
10). Just like the other tables, the columns in this table can be modified by using the
toggle columns button (element 9).
The user can select a sequence in the table using the radio buttons in the left most column
(element 11). Once selected the text in the row will turn orange to show the user it is
selected. Then the context of the sequence will be displayed in the bottom table (element
14) which works the same as on the cluster view page and again the columns are toggleable
with the toggle columns button (element 13).
In the top table (element 10) the user can change the values of the risk label of the
selected sequence by clicking on the current risk label (element 12), typing in an integer
value and pressing enter. This new risk label will then be saved to the database.
Once the user has changed all the risk labels they feel needed to be changed, they can
start the semi-automatic analysis. By pressing the start semi-automatic analysis button

14

(element 1) they will startup DeepCASE again which will then take the newly inputted
values of the risk labels into account.

Elements:

1. Button to run the semi-automatic analysis

2. Text box to display and change a cluster name

3. Button to select a cluster

4. Button to confirm the change of a cluster name

5. Button that selects a random cluster

6. Button that selects a random sequence

7. Button that select a relevant cluster

8. Button that select a relevant sequence

9. Button to toggle columns in element 10

10. Table that displays sequences in the selected clusters

11. Radio buttons to select a sequence

12. Adjustable risk label of the sequences

13. Button to toggle columns in element 13

14. Table that shows information about the selected cluster

5.5 Semi-auto Analysis

Figure 8: Semi-automatic analysis page

15

On this page the user can view the result of the semi-automatic analysis. It is very similar
to the cluster view and manual analysis page but it shows less information and is less
interactive making the page more clear and less cluttered. This might be useful to some
users.
A user can select any cluster using the select a cluster button (element 1) which sequences
will then be displayed in the top table (element 3). Again, the columns in this table are
toggleable using the toggle columns button (element 2). A user can select a sequence
using the radio buttons in the left most column of the table (element(4). The context of
that sequence will then be displayed in the bottom table (element 6) which columns are
also toggleable (element 5).
For a more in depth explanation about the elements contained on this page please look
at either the description of the cluster view page or the manual analysis page as all the
elements contained here are also present there.

Elements:

1. Button to select a cluster

2. Button to toggle columns in element 3 on or off

3. Table showing the sequences contained in the selected cluster

4. Radio buttons to select a sequence

5. Button to toggle columns in element 6 on or off

6. Table that shows information about the selected cluster

5.6 User Manual

Figure 9: User manual page

This page shows a quick guide to the dashboard guiding the user through the steps of
using it. This can be used to quickly teach new users how to interact with the dashboard

16

or as reference for more experienced users. Including this page will raise the accessibility
of the dashboard and we therefore choose to include it as that was one of our quality
requirements.

17

6 Global design

6.1 Database Schema

In this part, we will go through the decision process of how the database in our project came
to what it is. For the DeepCASE module, it is not necessary to use a database. However,
we have chosen to save it in a database, because this allows for better modifyability and a
better overview of the system – especially when trying to visualize it in a dashboard.

Figure 10: Database Schema

6.1.1 Our Approach

For the development of the database, we have used SQLite [6], which is a simple low-
configuration database setup. This allows us to shift our focus to development, instead
of configuration. SQLite has been experienced as efficient (enough) and suitable - i.e.
reasonable speed - for our purposes. For production use, it is good to consider other
database types, like PostgreSQL. PostgreSQL is more robust at handling greater volumes
of data. However, SQLite is suitable for local use, which is the scope of the project right
now.

6.1.2 Graphical Overview & Structure

The database schema, as shown in Figure 10, serves as a blueprint for the structured storage
and retrieval of security events, which are needed for DeepCASE. Each table within the
schema is designed with specific constraints to ensure data integrity and consistency. The
primary and foreign key constraints enforce a strong relational structure.

6.1.3 Conclusion

The implementation of our database schema is crucial for the creating of our dashboard.
Opting for a database, despite DeepCASE’s standalone functionality, affords us modularity
and clarity, particularly with dashboard visualisations.
While SQLite’s simplicity has facilitated our development with sufficient efficiency for
current demands, we acknowledge PostgreSQL’s superiority for handling larger datasets,
which we may consider for future scalability.

18

Overall, the integration of our database with DeepCASE creates a robust framework for
security event analysis. It ensures that our system remains agile and prepared for the
evolving landscape of data and security management. The schema depicted in Figure 10
is more than a static design; it’s the baseline for an even better dashboard.

6.2 Design Patterns & File Structure

Within the source code, standard patterns occur to enforce modular behavior. This design
has been particularly useful when implementing file structures between different imports.
Underneath, we will explain further design patterns and demonstrate specific global design
choices.

6.2.1 Design Patterns

Let us start with one of the most important patterns, which is the MVC-Pattern (Model-
View-Controller) pattern.

MVC-Pattern If we go through each different part of the pattern, then we start with
the M from Model. The model handles all the data interaction, which has been realized
using the DAO (Data Access Object) Pattern. This module handles all the queries, where
it works together with the database.py to actually return results. Then we continue to
the view, which is responsible for representing data interaction to the user. The templates
and static encapsulate core design components. However when it comes to dynamic pages,
Dash allows for an intuitive way for the user to interact with the data. Lastly, we have
the controllers. The controller is the intermediary between the view and the model. The
‘pages‘ directory is responsible for the interaction of all the pages. These will handles the
requests and perhaps callbacks on requests.

DAO-Pattern The DAO pattern has been used in our application to encapsulate database
logic. It provides an abstraction layer between the application logic and the database, mak-
ing data communication and manipulation easier. This has been used in our DAO class.

• Data Persistence: Methods like save_input and save_sequencing_results allow
for the processing of input files and sequencing data, storing them in the database.

• Data Retrieval: Functions get_initial_table and get_context_per_sequence
allow data fetching, offering a simplified interface to retrieve data without revealing
the complexity of the underlying database queries.

Observer Pattern The DeepCASE dashboard uses the Observer pattern through Dash’s
callback system, which allows UI components to react to state changes without direct
coupling. Callbacks (acting as observers) respond to user interactions by updating the
UI, maintaining the interface’s reactivity. This design is useful for scalability and clean
separation of concerns.
There are plenty of unmentioned patterns, such as builder pattern. But many of these
patterns are automatically used to create a more effective code base. This section is here
to explain the most import design patterns and demonstrate that during development,
design pattern have been kept in mind.

19

7 Detailed design

In this section we will give a detailed explanation of the workings and design chooses
made in the most important parts of the dashboard. This will hopefully give a better
understanding of the system and make it easier to maintain for further developers.

7.1 DeepCASE integration

In order to integrate DeepCASE with the operational framework we have designed a cer-
tain system architecture. Such integration includes design and implementation of several
modules that would ensure successful cooperation between DeepCASE module and the
web application and database. A detailed schema of the integration of different modules
and general data flow is presented in Figure 11.

Figure 11: Sequence Diagram

Process Module Process module represents the core functionality of the DeepCASE
module, as well as handles step by step analysis operations.

20

• Sequencing: Organises input events into sequences by extracting the main event
and defining corresponding array of context events.

• ContextBuilder training: Performs model training to determine attention scores
of the events.

• Clustering: Clusters sequences based on the events and attention scores.

• Manual analysis: Labels the generated clusters according to predefined algorithm,
returns tensor.Torch objects [7].

• Semi-Automatic Analysis: Predicts risk labels based on the results of Manual
analysis.

Processing Handler Module The Processing Handler module ensures correct execu-
tion of all the process steps. The module is also responsible for secure and consistent data
management; and interaction via Data Access Object (DAO), mainly by storing interme-
diate and final analysis results.

Data Access Object (DAO) Module The purpose of DAO module is to manage
database operations, including storing, updating and retrieving data necessary for both
backend processes and front end visualizations. DAO operates using pandas.Dataframe
objects. [4]

7.2 Front End in Dash

To create the front end we used a python library called Dash which is designed to be a
quick and easy way to make dashboard web apps. This library lets you use CSS and a
HTML-like language written in python. Dash provides the possibility to easily integrate
graphs and table in the web app and provides objects to run a web server.

7.2.1 HTML

The page is split into two parts: the navigation bar and the content container. The way
Dash works is that a certain part of the screen is static, in this case the navigation bar
and the other part is dynamic, the content container. So when a link is activated to switch
to another the web page only the content container will change. This is done by linking a
URL with a python file using the register_page method and then making the script inside
that file assign a new value to the layout variable. This value is a python array that closely
resembles the way an HTML file would be written.
The navigation bar being static has the upside that it does not have to be coded into every
page but it also has the downside that it is not adjustable per page. An example of this is
that we wanted to highlight the link to the current page in the navigation bar. However,
this was not possible due to it’s static nature. A quick and dirty way to solve this would
be to move the navigation bar into the dynamic section of the page and hard code it for
every page to have a different highlighted link.

7.2.2 CSS

Regular CSS is used to do the styling for the front end. The stylesheet is a file called
styling.css in the assets folder. Every node in the HTML-like python array can be assigned
a classname-parameter. This works the same as the class-attribute in HTML.

21

7.2.3 Color scheme

A dark blue and orange color scheme is used. We went through several design iterations
before we landed on these colors. These colors were chosen to give the dashboard a clear
and professional look. To follow this palette strictly four variables have been assigned in
the style sheet. Namely:

1. primary-color: #FF8E00

2. secondary-color: #84D5E6

3. tertiary-color: #001633

4. quarniary-color: #FF8E00

Of course quarniary should be called quaternary but we used the way it is spelled in the
code to avoid confusion.

7.3 File-structure

In the code-base we aimed for maintainable, readable, scalable, clear and organized file
hierarchy by sorting different parts of our application into separate folders and files.
For the app pages, we split the files into distinct parts based on specific design aspects,
HTML elements, callbacks and resources. This allowed to prevent duplicated code.
The data folder contains of the files pertaining to the database. Except the data access
object which is outside this folder as it acts more as a intermediary.
Then we have the processing folder, this is were DeepCASE run. This can be accessed as
well with an object: the processor access object.
Lastly, we have a test folder with some junit test were applicable.
Further we have chosen to not heavily rely on interfaces in our code base. Instead, we
import files with shared methods, which has proven effective, especially in Python where
interfaces are not enforced by the language. Our step-by-step approach to adding function-
ality by different members has proven that there is a certain level of readability, scalability
and maintainability of our code base. If one part of the code needs to be changed, a small
change was sufficient.

7.4 Variables

There are a few different kinds of variables, namely, client-based global variables, server-
based global variables, constants, and temporary variables. In this section we will talk
about front-based usage of those variables. In other parts of our code standard practice is
applied.

Constants In the front end, constants are used to prevent duplicate code. However,
these have a different callback and table. This is necessary to make dash work, since every
element needs a unique id. To solve this we made a suffix for them. In the code we use
them as input to generate a table that will appear multiple times.

Local variables Local variable are used as expected.

22

Client-based global variable At this point the website is only tested using local hosts
with only one device accessing said host[1]. This means that for all client-based variables we
could have used global variables. However, it appears that when the app gets deployed, you
get unexpected behaviour. Therefore we use a store element, this a client based variable,
it remembers which cluster or row is selected, in order to know which data to adjust. So
most variables where you think a global one is used, is client-based.
There is one exception, that is for the variable that determines if the deep-case is processing.
We made it such that only one process is going on. For example to make sure a file cannot
be manipulated while DeepCASE is running. An improvement on this would be to use the
status variable in database more extensively such that only one process can happen at the
same time on one file. A thing that needs to be kept in consideration while doing that is
that, the DAO keeps track of the selected file, this shouldn’t be change during a process.
So a solution need to be found for that.

7.5 Threads

Dash has a bug for multi-page apps. This bug causes all callbacks to get interrupted when
the user switches pages. For example if DeepCASE is running it will get interrupted as
well. This might cause the server to crash.
Therefore we run these processes in different threads to secure these callbacks can finish.
This is not a 100% fix simply because the user can, with help from a program, click faster
and let the program crash. This approach makes it so that the feedback from the process
not always reaches the user. However, This can be fixed by choosing a different platform
then Dash to run the app on. Thread fix is in our eyes the best solution with the chosen
platform.

7.6 Selection of events

The client had the request to let the dashboard give suggestions on the most relevant
sequences to label. We have split this task up in two parts, namely choosing the next
cluster and next sequence. This is done because the security operator can handle one
cluster at a time and then go to the next one instead of jumping all over the place.
Firstly we implemented this algorithm based on picking a random sequence or cluster.
This would be useful to get a taste of the data that is present. However, It would be nicer
for the security operator to have sequences presented that bear some relevance. Therefore
we created an algorithm.

Cluster We select the clusters where either information is missing or which are very risky,
so that the security operators are aware that those exist. This algorithm is rather slow,
because the system calculates the security label for each cluster. This can be resolved
by having the cluster risk labels stored in the database. Another options, is to keep
intermediate result in a client variable.

Sequence For the sequence we select all the unique combinations between, the machine,
risk label, and kind of event. Additionally, we choose to select the security labels with a
negative value. Those negative values are there because there is not enough information to
give it a proper risk label and it needs to be seen by security operators. After the selection
is made, only one suggestion is given, this is determined randomly. The assumption is that
the label might be changed and thus not be seen anymore by the algorithm. In order to

23

make this process more deterministic, it can be kept track of in a client-based variable.
This would be a further improvement.

24

8 Testing the System

When creating a dashboard for the DeepCASE module, it is important to keep functionality
in mind. This functionality and user flow should be formulated in a document, such that the
rules and guidelines are clear for the development. This document are the requirements. In
this section we will formulate tests to see whether these requirements have been fulfilled.

8.1 Testing Approach

The testing approach included the implementation of unit, integration and user testing
methods. The unit and integration testing are mainly applied to process and database
management operations, while front end and dashboard are mainly tested during the user
testing phase. The DeepCASE module was not tested assuming that the security tool
works without flaws. The reason to assume this is that it was already extensively tested
during it’s development.

8.1.1 Unit testing

The aim of unit testing is to ensure the correct functionality of the database, since the
database is one of the most crucial parts of the system. The testing was performed with
standard unit test Python library and a dummy database. All the tests accessed the
database from memory in order to avoid erasing or modifying already existing data. The
test covered both internal and external functions of the database, checking the correct
implementation of all the queries.
Several faults were discovered in the process. One of the bugs was related to returning
the sequences according to specified id: the responsible method returned the necessary
entry multiple times instead of one. The reason of this bug was insufficient check of join
constraints in SQL query. An extra check of equality between sequence_id and event_id
should be added to avoid repetitive results.
Another issue was related to the data types of columns representing risk_label or score
of sequences across the table. While all of the columns used to store the score of sequence
were of type "INT", the column risk_label in "sequences" table had "TEXT" data type.
The issue of mismatched data types could potentially lead to errors in data representation,
therefore it was decided to set all columns storing the risk labels of sequences to "INT"
type.

8.1.2 Integration testing

After testing the database via unit testing, integration testing is necessary. All the modules
work in cooperation with each other and are dependant on the correct functionality of
dependant modules. Hence, in order to address potential flaws in the system we perform
Top-Down integration testing. The details of the testing are described in Figure 12.
The internals of the system: Process, Process Handler, and DAO modules, were tested
using the standard unit test Python library using patches to imitate the work of integrated
modules. No issues arose with the integrated workflow of the modules on both higher and
lower levels of the system. The DeepCASE module itself was not tested explicitly.

8.1.3 User Testing

In order to test the usability of the dashboard, we performed user testing. Since the
primary goal of the project was to create a user-friendly dashboard that would integrate all

25

Figure 12: Integration Testing Diagram

functionality of DeepCASE, the objective of user testing was to receive feedback regarding
both appearance, and accessibility of the dashboard. The users were required to perform
the following tasks:

1. Upload the file using the database page.

2. Run the DeepCASE analysis.

3. Inspect the generated clusters on the manual page.

4. Inspect the sequences in a single cluster on the manual page.

5. Inspect context events of sequences on the manual page.

6. Change risk values of the sequences on the manual page.

7. Rename the cluster on the manual page.

8. Run the Semi-automatic analysis.

9. Inspect the sequences and its context events on a the semi-auto analysis page.

10. Inspect the clusters on the cluster view page.

11. Upload a new file.

12. Switch between the uploaded files.

Testing on usability of the dashboard provided a lot of valuable feedback.
As follows from Table 1, both system operation and design choices were sufficient, except
some minor issues that were addressed and fixed further in the development.

26

Feedback Solution
Analyze button disappears from
Database page when switching be-
tween pages.

The button "Start Security Analysis" is now
always present on the page but is disabled on
corresponding DeepCASE run status.

"Enter" command should change
the cluster name.

Added option to change cluster name: now
both "Change cluster name" and "Enter"
command work.

"Start Automatic Analysis" button
is not robust against multiple clicks.

Added popups indicating that server is busy
running Semi-Automatic analysis.

Automatic analysis button does not
disappear when the analysis is fin-
ished.

Added functionality where button gets dis-
abled once analysis is finished.

It is unclear when Database page is
loading

The browser tab enters "Uploading.." mode
when the page is loading the table.

Table 1: Feedback Received from User Testing and Presented Solutions

8.2 Requirements Testing

The following tables describes all functional and non-functional requirements specified and
approved by supervisor at the proposal stage. The requirements are divided into the
categories according to MoSCoW model [3]. The status of each requirement is indicated
in corresponding column with 0-1 scale, where 0 represents "Not Done", 0.5 - "Still in
Progress", and 1 - "Completed".

27

Functional Requirements

Requirement Progress Remarks
Must Have
As a user, I want to upload data in a format accepted by the
DeepCASE module.

1

As a user, I want to be able to train the DeepCASE module
on the uploaded data.

1

As a user, I want to be able to score individual events.
(Manual analysis)

1

As a user, I want the DeepCASE module to give a score to
uploaded data (Semi-automatic analysis)

1

As a user, I want the system to store the scores of the clusters. 1
As a user I want to be able to inspect security event
sequences. (Security event sequences)

1

As a user I want to be able to see which events in the sequence
are correlated. (Context builder)

1

As a user, I want to be able to inspect individual events.
(Interpreter)

1

As a user, I want to be able to approve or disapprove the score
given to a sequence. (Semi-automatic analysis)

X Dropped
Requirement

Should Have
As a user, I want the results of the uploaded security files to
be stored on the server and available for viewing by any user.

1

As a user, I want the system to randomly suggest which
sequences to rate during the manual phase.

1

As a user, I want to have a basic manual integrated into the
website.

1

As a user, I want the system to visualize the clusters in a
graphical way.

1

Could Have
As a user, I want to be able to filter sequences with specific
parameters. The parameters could be time, IP address, type
of events & risk values

1

As a user, I want to have a basic guide on the website, so that
working with the new system is easy.

1

As a user, I want the system to have regular backups. 0
As a user, I want the system to suggest the most relevant
sequences by an algorithm. The algorithm should be based on
specific metrics, (e.g., greatest difference in vectors)

1

Will Not Have
As a user, I want to connect it to real-time security loggers, so
that the data can be analysed in real-time.

0

As a user, I want to receive notifications about newly detected
malicious events.

0

28

Non-Functional Requirements

Requirement Progress Remarks
As a user, I want the dashboard and analysis to show results
within a reasonable time frame (1 or 2 seconds).

1

As a user, I want the dashboard to be understandable with
minimal training.

1

As a user, I want the dashboard to be intuitive. 1
As a user, I want the dashboard to give me accurate and
timely feedback when an error occurs.

1

As a user, I want the system to not have any substantial
freezes.

1

As a user, I want the system to be robust when against
unexpected inputs.

0.5

As a user, I want the data shown in the dashboard to be
correct.

1

As a user, I want the dashboard’s load time to remain static
with the addition of data to the database.

X Keep in mind

As a user, I want the system to be compatible with all major
browsers.

0.5

As a user, I want the dashboard to be available 99% of the
time.

1

As a developer, I want the code base to be maintainable. 1
As a developer, I want the code to be commented on and
documented.

1

29

9 Limitations And Further Improvements

The DeepCASE dashboard we have developed is a major step towards creating a user-
friendly and interactive UI for the DeepCASE module. While it demonstrates great po-
tential, further development is required to enhance its functionality. This section details
the current features and identifies areas for improvement, facilitating future enhancements
by other developers.

9.1 Database Page

Current Functionality: The system currently supports file uploads and subsequent ex-
ecution of the DeepCASE analysis, which meets the basic operational expectations.

Issues and Proposed Solutions:

• Upload Speed: Uploads are slow on some devices, likely due to the handling of
large files and server-side rendering limitations.
Proposed Solution: Upgrade to a more powerful server to manage heavy computations
more efficiently. Another solution is to rewrite the code to take a lazy approach to
uploading/displaying data, so that it only uploads/displays as much as is needed.

• Feedback Mechanism: A feedback box appears after the interaction that might
take a long time, intended to inform users that the process may take a while. However,
this popup can be easily discarded and there is no way to know when the process
finishes if the users switches to another page.
Proposed Solution: Redesign the popup to be a status bar that is always present in
the sidebar and let the user know when the operation finishes. Instead of using a
popup overlay, a status bar would allow you to perform other actions in the meantime.

9.2 Cluster view

• Graph Visualization: The graph shows the sequences in the selected cluster, but
it lacks more polish from the design and functionality perspective.
Proposed Solution: Although it gets the job done, it could be further improved by
adding the ability to hover over the point to see more information and by making
the graph look more pleasing by updating the design and styling the filter buttons.

9.3 Manual analysis

• Interface Clarity: The interface shows a name change input box alongside a button
labeled "Change cluster name." During tests, users mistook this for a direct action
button rather than a submit button, leading to confusion.
Proposed Solution: Redesign the dashboard to clearly differentiate between input
fields and action buttons, perhaps by updating the button text to "Submit name
change."

• Risk Level Change Feedback: It is possible to change the risk level of a given
sequence, which meets the basic requirements. However, this function is not imple-
mented intuitively.
Proposed Solution: The system should be more responsive to user actions and clearly
show when a change is made or when the user forgot to save the changes. When

30

changing the risk level of a sequence, a popup which does not obstruct the view/ac-
tions of the user should be shown instead.

• Choosing Next Cluster: The button that lets the system choose a next cluster
based on an algorithm is not optimized and is deemed to be too slow for general
usage. Also, it is not clear by which criteria the next cluster is chosen.
Proposed Solution: Improve the performance of the algorithm, so that it takes a
shorter time to find a cluster to score. Additionally, add an info box describing the
manner in which the next sequence is chosen.

• Choosing Next Sequence: This feature was initially implemented with two "Choose
random ..." buttons. Two additional buttons "Choose next ..." have been added to
offer more choice for the user, but it introduces some design issues.
Proposed Solution: It is possible to combine this into one button or have the ability
to toggle between them to simplify the interface.

• Button Functionality: The button for initiating semi-automatic analysis is not
completely fool-proof and it can be broken by specific actions made by the user while
the analysis is still not complete, which could result in the need to restart the whole
dashboard.
Proposed Solution: Implement state management to prevent re-initialization of the
process and to provide clear instructions to users about maintaining their session
until the analysis is complete.

9.4 Semi-automatic Analysis

• Similarity to Cluster View: The current page of Semi-Automatic Analysis is very
similar to the functionality of the Cluster View page.
Proposed Solution: This could be solved by merging the two pages together, or
thinking of a different unique way to show the semi-automatic step.

9.5 General dashboard

The system as a whole has some limitations and ways it can be further improved upon:

• Loading Mechanism: Whenever the system is executing something, it will change
the page title to "Updating...". This is not that visible however, which can make it
appear as not providing feedback to the user.
Proposed Solution: Include a spinner whenever the system is executing something
client-side or server-side.

• Table row selection & column names: Selection of a row is done through a
radio button on the left side of each row, which can be unintuitive and clunky.
Column names are hidden/toggled through a "Toggle columns" button, included
automatically by Dash, the location of which cannot be changed.
Proposed Solution: Each row could be made to be selectable, at any point along the
row. As for the "Toggle columns" button, an icon could be given to the button to
reduce clutter on the table. Additionally, there may be a way to change the position
of this button using JavaScript, or by creating tables in a different way, besides Dash.

31

9.6 Conclusion

The aforementioned sections highlight several critical areas where the DeepCASE dash-
board could benefit from enhanced functionality and improved user interaction. While the
dashboard shows promise, it struggles with certain limitations, especially when managing
large data sets [5]. We hope that the insights provided will guide effective improvements
to the system’s architecture and user interface.

32

10 Conclusions

As we wrap up this project, we want to thank Dr. Thijs van Ede for his invaluable help.
Thijs’ enthusiasm and helpful feedback during our weekly meetings greatly improved our
work and understanding of the DeepCASE, which was necessary to create the dashboard.
This project has been a great learning experience for all of us. We explored the complex
world of security analysis, reaching new grounds of AI-assisted monitoring systems. This
not only improved our technical skills but also helped us learn to cooperate, which was
necessary to keep improving what we have.
We are proud of the dashboard we created. We went through all phases of development,
working with a real stakeholder and were amazed by the self-management.
Lastly, we thank everyone who supported us, from the project group itself to our supervisor
who pushed us to think deeply and creatively. The skills and knowledge we’ve gained from
this project will surely help us in our future technical computer science life.
Group 1

33

References

[1] Store| dash for python| documentation plotly.

[2] Thijs van Ede, Hojjat Aghakhani, Noah Spahn, Riccardo Bortolameotti, Marco Cova,
Andrea Continella, Maarten van Steen, Andreas Peter, Christopher Kruegel, and Gio-
vanni Vigna. Deepcase: Semi-supervised contextual analysis of security events. 2022
IEEE Symposium on Security and Privacy (SP), May 2022.

[3] A. Hudaib, R. Masadeh, M. H. Qasem, and A. Alzaqebah. Requirements prioritization
techniques comparison. Modern Applied Science, 12(2):64–65, 2018.

[4] pandas development team. pandas.dataframe - pandas 1.5.2 documentation, 2023.
Accessed: 2024-04-25.

[5] Plotly. Performance. https://dash.plotly.com/performance, 2024. Accessed: 2024-
04-17.

[6] Python Software Foundation. sqlite3 — db-api 2.0 interface for sqlite databases, 2023.
Accessed: 2024-04-25.

[7] PyTorch. Pytorch documentation, 2023. Accessed: 2024-04-25.

34

https://dash.plotly.com/performance

A Manual

This guide provides step-by-step instructions on how to install and run the Docker-deployed
system. Please follow the steps below to set up your environment correctly.

A.1 Installing Docker

1. Download Docker for your operating system from the official Docker website: https:
//www.docker.com/products/docker-desktop

2. Run the installer and follow the on-screen instructions to complete the installation.

3. Once installed, open a terminal or command prompt and verify the installation by
running: docker –version. This command should display the Docker version in-
stalled on your system.

A.2 Running the Dockerfile

1. Navigate to the directory containing your Dockerfile.

2. Build the Docker image by running: docker build -t deepcase-dashboard .

3. Once the image is built, run the container by executing: docker run -p 8050:8050
deepcase-dashboard.

A.3 Accessing the Application

1. Open your web browser.

2. Enter http://localhost:8050 in the address bar.

3. Press Enter, and you should now have access to the application running on your local
machine.

A.4 Further Assistance

1. For further questions, please consult the user manual available, which can be found
on the deployed dashboard. This manual provides detailed information on system
functionalities.

A.5 Using Test Files

1. Sample test files, such as sample_data.csv, can be found in the data folder within
your repository.

2. You can use these files, to start running Deepcase.

B Source code

You can find a git repository containing the source code to the dashboard using the fol-
lowing url: https://github.com/Kristupasc/DeepCASE-Dashboard

35

https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
http://localhost:8050

	Introduction
	Struggle of Security Operators
	Core Problem and Solution with DeepCASE
	The Proposed Dashboard
	Conclusion

	DeepCASE
	Sequences and the Context Builder
	Clustering and the Interpreter
	Risk labels and Manual Analysis
	Semi-automatic Analysis

	Requirements
	Functional Requirements
	Non-Functional Requirements

	Overall Process
	Design Process
	Coding Process
	Cooperation and Collaboration
	Conclusion

	UI design
	Sidebar
	Database
	Cluster View
	Manual Analysis
	Semi-auto Analysis
	User Manual

	Global design
	Database Schema
	Our Approach
	Graphical Overview & Structure
	Conclusion

	Design Patterns & File Structure
	Design Patterns

	Detailed design
	DeepCASE integration
	Front End in Dash
	HTML
	CSS
	Color scheme

	File-structure
	Variables
	Threads
	Selection of events

	Testing the System
	Testing Approach
	Unit testing
	Integration testing
	User Testing

	Requirements Testing

	Limitations And Further Improvements
	Database Page
	Cluster view
	Manual analysis
	Semi-automatic Analysis
	General dashboard
	Conclusion

	Conclusions
	Manual
	Installing Docker
	Running the Dockerfile
	Accessing the Application
	Further Assistance
	Using Test Files

	Source code

